1 Siswa mampu membuktikan rumus aturan sinus dan aturan cosinus. B. Tugas Kelompok: Diskusikan dengan teman dalam kelompokmu masalah berikut dan buatlah kesimpulan tentang konsep aturan sinus dan aturan cosinus serta rumusnya. C. Masalah: ATURAN SINUS Pada segitiga ABC kita Tarik garis tinggi dari titik B ke AC, kita peroleh garis BD tegak lurus
Sinα = a / c = 3 / 5. Cos α = b / c = 4 / 5 . Tan α = a / b = 3 / 4. Jika a = 10, c = 26. Pembahasan : b² = c² - a² = 26² - 10² = 676 - 100 b =√576 b = 24. Sin α = a / c = 10 / 26 . Cos α = b / c = 24 / 26 . Tan α = a / b = 10 / 24. 4. Sin 17 o Cos 13 o + Cos 17 o Sin 13 o. Disini kita menggunakan 2 rumus perkalian trigonometri
Jawabannya: Menurut aturan pada cosinus, panjang sisi a dapat dihitung dengan menggunakan rumus a2 = b2 + c2 − 2bc cos A, sebab pada soal ini diketahui a2 = b2 + c2 − √3bc, jadi dapat berlaku : Menurut aturan pada cosinus, panjang sisi c dapatlah dihitung dengan menggunakan rumus c2 = a2 + b2 − 2ab cos C, sebab pada soal ini diketahui
JikaCos B 1 3 P Lt B Lt 3 2p Hitunglah Dengan Menggunakan Rumus Sudut Ganda A Sin 2b B Brainly Co Id . 0 5 pq 2 9 25 15 pq 2 19 pq 19 4 36. Rumus dari cos p q. Rumus trigonometri lengkap dibagi menjadi rumus trigonometri lengkap dengan jumlah dan selisih dua sudut dan rumus trigonometri lengkap untuk sudut rangkap.
A dan sudut SPR = B P A. Buktikan rumus sin( A B) sin cos A.sin B dengan langkah berikut : 1. Gunakan perbandingan trigonometri untuk menyatakan a. x dalam a dan sudut A ; x = .. b. x dalam b dan sudut B; x = .. 2. Gunakan rumus luas segitiga ABC : L = ½ a b sin C, untuk menghitung a. luas segitiga PQR = b.
Vay Tiền Trả Góp Theo Tháng Chỉ Cần Cmnd Hỗ Trợ Nợ Xấu. A idéia deste e do próximo 'rascunho' é apresentar duas maneiras distintas de se deduzir fórmulas do tipocosa - b = cos a cos b + sen a sen bEm outras palavras deduziremos fórmulas que calculam as funções trigonométricas da soma e da diferença de dois arcos cujas funções são conhecidas. 1ª Maneira Antes de mais nada, lembremos que a distância entre dois pontos do plano x,y e z,w é dada pord² = x - z² + y - w então no círculo de raio 1 os pontos P e Q figura 1. tais quei medida do arco AP = a ii medida do arco AQ = b Figura P = cos a, sen a e Q = cos b, sen b, a distância d entre os pontos P e Q é dada pord² = cos a - cos b² + sen a - sen b² =cos²a - 2cos a cos b + cos²b + sen²a - 2sen a sen b + sen²b =cos²a + sen²a + cos²b + sen²b - 2cos a cos b + sen a sen b =1 + 1 - 2cos a cos b + sen a sen b =2 - 2cos a cos b + sen a sen b.Mudemos agora nosso sistema de coordenadas girando os eixos de um ângulo b em torno da origem figura 2. Figura novo sistema de coordenadas, o ponto Q tem coordendas 1 e 0, ou seja, Q = 1,0. Além disso, o ponto P tem coordenadas cosa - b e sena - b, isto é, P = cosa-b, sena-b. Calculando novamente a distância entre os pontos P e Q, obtemosd² = [1 - cosa - b]² + [0 - sena - b]² =1 - 2cosa - b + [cos²a - b + sen²a - b] =2 - 2cosa - b.Igualando os valores de d², obtemos2 - 2cos a cos b + sen a sen b = 2 - 2cosa - b,I cosa - b = cos a cos b + sen a sen 'b' por '-b' e usando o fato de cos-b = cos b e sen-b = - sen b, na igualdade acima, obtemosII cosa + b = cos a cos b - sen a sen A partir das duas igualdades acima - I e II -, deduza quea sena + b = sen a cos b + sen b cos ab sena - b = sen a cos b - sen b cos a2 Usando I e II, a igualdade tg x = sen x/cos x e o exercício 1, deduza que tga - b = tg a - tg b/1 + tg a tg b e tg a + b = tg a + tg b/1 - tg a tg b.PS. Coloque suas soluçãoões em 'comentários'.
Hallo Gangs Apa kabar? Semoga kita semua selalu ada dalam lindungan-Nya. Amin. Pada kesempatan kali ini kita akan belajar tentang rumus sinus, kosinus dan tangen. Kita tidak akan sekedar mengetahui rumus-rumusnya namun kita juga akan melatih kemampuan otak kita dengan contoh-contoh soal yang akan di berikan. Okeee Gengs langsung saja yaaa Sebelum kita melangkah pada latihan soal, akan diberikan beberapa rumus yang akan kita gunakan untuk menjawab soal-soal. Perhatikan aturan-aturan berikut ini Aturan Sinus Aturan Cosinus Aturan trigonometri pada segitiga Nahhhhhh sekarang kita akan masuk pada latihan soal!!! CONTOH 1 Soal Pada △ABC diketahui bahwa sudut A = 30°, a = 6 dan b = 10. Tentukanlah nilai dari Sin B. Jawab Dengan menggunakan aturan sinus. Akan di peroleh rumus sebagai berikut Rumus di atas bisa kita tuliskan ke dalam a sin B = b sin A 6 sin B = 10 sin 30° 6 sin B = 10 x ½ sin B = 5/6 CONTOH 2 Soal Pada segitiga PQR diketahui besar sudut P = 60°, sudut R = 45° dan panjang p = 8√3. Tentukanlah panjang sisi r. Jawab Dengan menggunakan aturan sinus. Akan di peroleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut p sin R = r sin P 8√3 sin 45° = r sin 60° 8√3 x 1/2√2 = r 1/2√3 4√6 = r x 1/2√3 r = 4√6 ÷ ½√3 = 8√2 CONTOH 3 Soal Apabila diketahi △ABC dimana sudut A = 75°, sudut B = 60° dan panjang sisi c = 20. Tentukan panjang sisi b. Jawab Sebelumnya, apabila kita perhatikan baik-baik soal di atas dimana sudut yang diketahui adalah A dan B sedangkan panjang sisi yang diketahui adalah c dan b adalah panjang sisi yang ditannyaka. Dari penjelasan ini, kita tidak akan menemukan suatu rumus yang mengikuti aturan sinus. Oleh karena itu, kita harus menentukan besar sudut C-nya. besar sudut C = 180° – [75°+ 60°] = 45° Nahhhhhh setelah kita tentukan besar sudut C maka dengan mudah kita dapat tentukan aturan sinus yang akan kita gunakan untuk mengerjakan soal ini sebagai berikut. Sehingga dapat kita kerjakan sebagai berikut b sin C = c sin B b sin 45° = 20 sin 60° b ½ √2 = 20. ½√3 b ½ √2 = 10 √3 b = 10 √3 ÷ ½ √2 = 10√6 CONTOH 4 Soal Apabila diketahui suatu △ABC memiliki panjang sisi a = 12, besar sudut A = 60° dan sudut C = 45°, maka berapakah panjang sisi c? Jawab Dengan menggunakan aturan sinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut a sin C = c sin A 12 sin 45° = c sin 60° 12 x ½√2 = c x ½√3 6√2 = c x ½√3 c = 6√2 ÷ ½√3 = 4√6 CONTOH 5 Soal Jika diketahui suatu △ABC memiliki panjang sisi c = 12√2cm, besar sudut A = 105° dan besar sudut C = 45°, maka berapakah panjang sisi b? Jawab Pada soal nomor 5 ini kasusnya sama dengan soal nomo 3 dimana sudut yang diketahui adalah A dan C sedangkan panjang sisi yang diketahui adalah c dan b adalah panjang sisi yang penjelasan ini, kita tidak akan menemukan suatu rumus yang mengikuti aturan sinus. Oleh karena itu, kita harus menentukan besar sudut B-nya, sebagai berikut ini. besar sudut B = 180° – [105° + 45°] = 30° Nahhhhhh setelah kita tentukan besar sudut B maka dengan mudah kita dapat tentukan aturan sinus yang akan kita gunakan untuk mengerjakan soal ini sebagai berikut. Sehingga dapat kita kerjakan sebagai berikut b sin C = c sin B b sin 45° = 12√2 sin 60° b x ½√2 = 12√2 x ½√3 b x ½√2 = 6√6 b = 12√3 CONTOH 6 Soal Tentukan panjang sisi b apabila diketahui besar sudut A = 60°, besar sudut B = 45° dan panjang sisi a = 6√3 pada △ABC. Jawab Dengan menggunakan aturan sinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut a sin B = b sin A 6√3 x sin 45° = b sin 60° 6√3 x ½√2 = b x ½√3 3√6 = b x ½√3 b = 3√6 ÷ ½√3 = 6√2 CONTOH 7 Soal Tentukan △ABC dengan panjang sisi a = 4, b = 10 dan sin B = ½. Berapakah nilai dari cos A. Jawab Dengan menggunakan aturan sinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut a sin B = b sin A 4 ½ = 10 sin A 2 = 10 sin A sin A = 2/10 = ⅕ karena yang ditanyakan adalah cos A maka kita akan mencarinya dengan berpatokan pada nilai sin A yang telah kita peroleh, sebagai berikut cos² A = 1 – sin² A = 1 – ⅕² = 24/25 cos A = ⅖√6 CONTOH 8 Soal Sebuah △ABC memiliki panjang c = 4 , a = 6 dan b = 8 . Tentukan nilai dari cos C. Jawab Dengan menggunakan aturan cosinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut cos C = [a² + b² – c² ] ÷ [ = [6² + 8² – 4² ] ÷ = [36 + 64 – 16 ] ÷ 96 = 84 ÷ 96 CONTOH 9 Soal Sebuah △ABC memiliki panjang sisi a = 3, c = 8 dan besar sudut B = 60°. Tentukan panjang sisi b. Jawab b² = a² + c² – 2ac cos B = 3² + 8² – cos 60° = 9 + 64 – 48 ½ = 73 -24 = 49 Sehingga b = √49 = 7 CONTOH 10 Soal Diketahui △ABC dengan panjang sisi c = 9, b = 8cm dan a = 7. Tentukan nilai dari sin A. Jawab Dengan menggunakan aturan cosinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut cos A x 2bc = b² + c² – a² cos A x [ = 9² + 8² – 7² 144 cos A = 81 + 64 – 49 cos A = 96/144 = 2/3 karena yang ditanyakan adalah sin A maka kita akan mencarinya dengan berpatokan pada nilai cos A yang telah kita peroleh, sebagai berikut sin² A = 1 – cos²A = 1 – 2/3² = 1 – 4-/9 = 5/9 sin A = √5/9 = ⅓√5 CONTOH 11 Soal Pada suatu segitiga ABC diketahui panjang sisi a = 3, b = 5 dan c = 7. Tentukanlah nilai tan C. Jawab Dengan menggunakan aturan cosinus, akan diperoleh c² = a² + b² – 2ab cos C 7² = 3² + 5² – cos C 49 = 9 + 25 – 30 cos C 30 cos C = -15 cos C = – 15/30 = -1/2 Sehingga C = 120 Selanjutnya, kita tentukan nilai tan C. tan C = tan 120° = tan 180° – 60° = – tan 60° = – √3 CONTOH 12 Soal Diketahui sebuah segitiga ABC dengan panjang sisi a = 6, b = 8 dan besar sudut C = 60°. Tentukanlah panjang sisi c. Jawab Dengan menggunakan aturan cosinus, akan diperoleh c² = a² + b² – 2ab cos C c² = 6² + 8² – 60° c² = 36 + 64 – 96 . ½ c² = 100 – 48 = 52 Sehingga akan diperoleh sebagai berikut c = √52 = 2√13 CONTOH 13 Soal Pada △ABC diketahui besar sudut C = 60°, panjang sisi c = 12 dan panjang sisi a = 15. Tentukan luas segitiga ABC. Jawab Dengan menggunakan aturan triginimetri pada segitiga, diperoleh sebagai berikut. Luas △ABC = ½ x c x a x sin C = ½ x 12 x 15 x sin 60° = ½ x 12 x 15 x ½√3 = 45√3 CONTOH 14 Soal Pada △ABC diketahui a = 2√7cm, b = 4cm dan c = 6cm. Maka tentukan nilai sin A. Jawab Dengan menggunakan aturan cosinus, diperoleh hasil sebagai berikut cos A x 2bc = b² + c² – a² cos A x = 4² + 6² – 2√7² 48 cos A = 16 + 36 – 28 = 24 cos A =24/28 = ½ maka didapat besar sudut A = 60° Sehingga sin 60° = ½√3 CONTOH 15 Soal Misalkan sebuah segitiga ABC sama sisi memiliki panjang 8, maka Berapakah luas segitiga tersebut. Jawab Kita misalkan bahwa segitiga sama sisi tersebut memiliki besar sudut yang sama yaitu 45° dan semua sisi memiliki panjang yang sama sehingga luasnya didapat seperti ini Luas △ABC = ½ x s x s x sin α = ½ x s x s x sin 45 = ½ x 12 x 12 x ½√2 = 36√2 CONTOH 16 Soal Jika diketahui △ABC memiliki besar sudut A = 65°, B = 55°, panjang sisi b = 6 dan panjang sisi a = 8, maka tentukan luas segitiga tersebut adalah Jawab Karena sin C-nya belum diketahui, maka kita cari dahulu nilai sin C. Besar sudut C = 180° – [65° + 55°] = 60° Sesudah mendapatkan nilai sin C maka selanjutnya kita mengerjakan berdasarkan aturan segitiga pada trigonometri sebagai berikut Luas △ABC = ½ x a x b x sin 60° = ½ x 6 x 8 x ½√3 = 12√3 Demikian cintoh-contoh soalnya. Semoga bermanfaat
- Rumus-Rumus Trigonometri Penjumlahan Sinus Cosinus Tangen Rumus Trigonometri Penjumlahan Dua Sudut 1. Rumus Cosinus Penjumlahan Sudut Perhatikanlah gambar di bawah ini. Dari lingkaran yang berpusat di O0, 0 dan berjari-jari 1 satuan misalnya, Dengan mengingat kembali tentang koordinat Cartesius, maka a. koordinat titik A 1, 0 b. koordinat titik B cos A, sin A c. koordinat titik C {cos A + B, sin A + B} d. koordinat titik D {cos –B, sin –B} atau cos B, –sin B AC = BD maka AC2 + DB2 {cos A + B – 1}2 + {sin A + B – 0}2 = {cos B – cos A}2 + {–sin B – sin A}2 cos2 A + B – 2 cos A + B + 1 + sin2 A + B = cos2 B – 2 cos B cos A + cos2 A + sin2 B + 2 sin B sin A + sin2 A 2 – 2 cos A + B = 2 – 2 cos A cos B + 2 sin A sin B 2 cos A + B = 2 cos A cos B – sin A sin B cos A + B = cos A cos B – sin A sin B Maka didapat Rumus Cosinus Penjumlahan dua sudut cos A + B = cos A cos B – sin A sin B Dengan cara yang sama, maka cos A – B = cos A + –B cos A – B = cos A cos –B – sin A sin –B cos A – B = cos A cos B + sin A sin B Rumus Cosinus Selisih dua sudut cos A – B = cos A cos B + sin A sin B Untuk lebih paham tentang penggunaan rumus cosinus jumlah dan selisih dua sudut, silakan anda pelajari contoh soal berikut. Contoh soal Penjumlahan sudut Diketahui cos A = 5/13 dan sin B = 24/25 , sudut A dan B lancip. Hitunglah cos A + B dan cos A – B. Penyelesaian cos A = 5/13 , maka sin A = 12/13 sin B = 24/25 , maka cos B = 7/25 cos A + B = cos A⋅ cos B – sin A⋅ sin B = 5/13 ⋅ 7/25 – 12/13 ⋅ 24/25 = 35/325 − 288/325 = − 253/325 cos A – B = cos A⋅ cos B + sin A⋅ sin B = 5/13 ⋅ 7/25 + 12/13 ⋅ 24/25 = 35/325 + 288/325 = 323/325 2. Rumus Sinus Penjumlahan Dua Sudut Perhatikan rumus berikut ini. Maka rumus sinus jumlah dua sudut Dengan cara yang sama, maka sin A – B = sin {A + –B} = sin A cos –B + cos A sin –B = sin A cos B – cos A sin B Rumus sinus selisih dua sudut sin A – B = sin A cos B – cos A sin B Perhatikan contoh soal berikut ini untuk memahami tentang penggunaan rumus sinus jumlah dan selisih dua sudut. Contoh soal Diketahui cos A = – 4/5 dan sin B = 5/13 , sudut A dan B tumpul. Hitunglah sin A + B dan sin A – B. Penyelesaian cos A = – 4/5 , maka sin A = 3/5 kuadran II sin B = 5/13 , maka cos B = – 12/13 kuadran II sin A + B = sin A cos B + cos A sin B = 3/5 . –12/13 + –4/5 . 5/13 = –36/65 – 20/65 = – 56/65 sin A – B = sin A cos B – cos A sin B = 3/5 . –12/13 – –4/5 . 5/13 = –36/65 + 20/65 = – 16/65 3. Rumus Tangen Penjumlahan Dua Sudut Rumus tangen jumlah dua sudut Pelajarilah contoh soal berikut agar kamu memahami penggunaan rumus tangen jumlah dan selisih dua sudut. Tanpa menggunakan tabel logaritma atau kalkulator, hitunglah tan 105°. Penyelesaian tan 105° = tan 60 + 45° = tan 60° tan 45° 1 tan60 tan45 Demikianlah postingan tentang rumus penjumlahan trigonometri sinus, cosinus, tangen yang bisa saya bagikan. Silakan dipelajari dan semoga ada manfaatnya. Salam.
As identidades trigonométricas são relações entre funções trigonométricas. A tangente e a identidade fundamental são os principais exemplos dessas relações, existindo, ainda, as funções secante, cossecante e cotangente. Leia também Transformações trigonométricas — as fórmulas que facilitam o cálculo de algumas razões trigonométricas Tópicos deste artigo1 - Resumo sobre identidades trigonométricas2 - Quais são as identidades trigonométricas?3 - Demonstrações das identidades trigonométricas→ Demonstração da tangente→ Demonstração da identidade fundamental da trigonometria4 - Outras identidades trigonométricas5 - Exercícios resolvidos sobre identidades trigonométricasResumo sobre identidades trigonométricas As identidades trigonométricas são igualdades que relacionam funções trigonométricas. Os principais exemplos de identidades trigonométricas são a tangente e a identidade fundamental. A tangente de um ângulo  é igual à razão entre o seno de  e o cosseno de Â, desde que cos não seja nulo. A identidade fundamental da trigonometria determina que a soma entre o quadrado do seno de um ângulo  e o quadrado do cosseno de  é 1. Outros exemplos de identidades trigonométricas são as funções secante, cossecante e cotangente. Quais são as identidades trigonométricas? As identidades trigonométricas são igualdades que associam funções trigonométricas. As principais são a tangente tan e a identidade fundamental da trigonometria Tangente a tangente de um ângulo θ é igual à razão entre o seno de θ e o cosseno de θ, em que cos θ≠0 \tan\ \theta=\frac{sen\ \theta}{cos\ \theta}\ Identidade fundamental da trigonometria também conhecida como identidade de Pitágoras, estabelece uma relação entre o seno e o cosseno de um ângulo θ. De acordo com essa identidade, a soma entre \\leftsen\ \theta\right^2 e \leftcos\ \theta\right^2\ é igual a 1. Escrevendo \\leftsen\ \theta\right^2=sen^2\ \theta\ e \\leftcos\ \theta\right^2=cos^2\ \theta\, temos que \sen^2\ \theta\ +\ cos^2\ \theta\ =1\ Não pare agora... Tem mais depois da publicidade ; Como aplicar as identidades trigonométricas? Podemos aplicar as identidades trigonométricas quando, para certo ângulo θ, desconhecemos o valor de uma das funções. Exemplo 1 Utilizando as aproximações sen 40°≈0,643 e cos 40°≈0,766, determine o valor de tan 40° com três casas decimais. Resolução Utilizando a identidade trigonométrica da tangente \tan\ 40°=\frac{sen 40°}{cos 40°}\ \tan\ 40°=\frac{0,643}{0,766}\ \tan\ 40°=0,839\ Exemplo 2 Se θ é um ângulo do segundo quadrante e sen θ≈0,956, encontre o valor de cos θ com três casas decimais. Resolução Utilizando a identidade fundamental da trigonometria \sen^2\ \theta+cos^2\ \theta=1\ \\left0,956\right^2+cos^2\theta=1\ \0,913936+cos^2\theta=1\ \cos^2\theta=0,086064\ \cos\ \theta=\pm\sqrt{0,086064}\ Como θ é um ângulo do segundo quadrante, então o valor do cos θ é negativo, portanto \cos\ \theta=-\ \sqrt{0,086064}\ \cos\ \theta=-0,293\ Demonstrações das identidades trigonométricas → Demonstração da tangente A demonstração da identidade trigonométrica \tan\ \theta=\frac{sen\ \theta}{cos\ \theta}\ segue da definição de tangente na circunferência trigonométrica de raio 1. Observe que as coordenadas de P são x=cos θ e y=sen θ. Por definição, \tan\ \theta=\frac{y}{x}\, assim \tan\ \theta=\frac{sen\ \theta}{cos\ \theta}\ → Demonstração da identidade fundamental da trigonometria A demonstração da identidade trigonométrica sen2 θ + cos2 θ = 1 também se baseia na circunferência trigonométrica. Na imagem anterior, observe que o triângulo ABP é retângulo em B e que AB=cos θ, BP=sen θ e AP=1. Aplicando o teorema de Pitágoras nesse triângulo, concluímos que \sen^2\ \theta+cos^2\ \theta=1\ Outras identidades trigonométricas As funções secante sec, cossecante cossec e cotangente cotan também são exemplos de identidades trigonométricas \sec\ \theta=\frac{1}{cos\ \theta}\ \cossec\ \theta=\frac{1}{sen\ \theta}\ \cotan\ \theta=\frac{1}{tan\ \theta}=\frac{cos\ \theta}{sen\ \theta}\ Associando essas funções com a identidade de Pitágoras, podemos construir outras identidades trigonométricas \sec^2\theta=1+tan^2\ \theta\ \cossec^2\theta=1+cotan^2\ \theta\ Saiba mais Aplicações trigonométricas na Física Exercícios resolvidos sobre identidades trigonométricas Questão 1 Considere que cos θ≠1. Assim, a expressão \\frac{sen^2\ \theta}{1-cos\ \theta}\ é igual a qual alternativa? A cos θ B 1 + cos θ C sen θ D 1 + sen θ E tan θ Resolução Alternativa B Reescrevendo a identidade trigonométrica fundamental, temos que \sen^2\theta=1-cos^2\theta\. Assim \\frac{sen^2\theta}{1-cos\ \theta}=\frac{1-cos^2\theta}{1-cos\ \theta}\ Como \1=1^2\, podemos reescrever o numerador \1-cos^2\theta=1^2-cos^2\theta=\left1-cos\ \theta\right.\left1+cos\ \theta\right\ Portanto \\frac{1-cos^2\ \theta}{1-cos\ \theta}=\frac{\left1-cos\ \theta\right.\left1+cos\ \theta\right}{\left1-cos\ \theta\right}\ =\ 1\ +\ cos\ \theta\ Questão 2 Se sen θ≠0 e cos θ≠0, determine o valor de a=sec θ ∙ cos θ + cossec θ ∙ sen θ. Resolução Substituindo sec \\theta=\frac{1}{cos\ \theta} \ e cossec \\theta=\frac{1}{sen\ \theta}\ na expressão de a, temos que \a=\ \frac{1}{cos\ \theta}\cdot cos\ \theta+\ \frac{1}{sen\ \theta}\cdot seno\ \theta=1+1=2\ Logo, a=2 Por Maria Luiza Alves Rizzo Professora de Matemática
Sin A + Sin B, an important identity in trigonometry, is used to find the sum of values of sine function for angles A and B. It is one of the sum to product formulas used to represent the sum of sine function for angles A and B into their product form. The result for sin A + sin B is given as 2 sin ½ A + B cos ½ A - B. Let us understand the sin A + sin B formula and its proof in detail using solved examples. 1. What is Sin A + Sin B Identity in Trigonometry? 2. Sin A + Sin B Sum to Product Formula 3. Proof of Sin A + Sin B Formula 4. How to Apply Sin A + Sin B? 5. FAQs on Sin A + Sin B What is SinA + SinB Identity in Trigonometry? The trigonometric identity sinA + sinB is used to represent the sum of sine of angles A and B, sin A + sin B in the product form using the compound angles A + B and A - B. It says sin A + sin B = 2 sin [A + B/2] cWe will study the sin A + sin B formula in detail in the following sections. Sin A + Sin B Sum to Product Formula The sin A + sin B sum to product formula in trigonometry for angles A and B is given as, Sin A + Sin B = 2 sin [½ A + B] cos [½ A - B] Here, A and B are angles, and A + B and A - B are their compound angles. Proof of SinA + SinB Formula We can give the proof of sin A + sin B formula sin A + sin B = 2 sin ½ A + B cos ½ A - B using the expansion of sinA + B and sinA - B formula. We know, using trigonometric identities, ½ [sinα + β + sinα - β] = sin α cos β, for any angles α and β. From this, [sinα + β + sinα - β] = 2 sin α cos β ... 1 Let us assume that α + β = A and α - β = B. ⇒ 2α = A + B ⇒ α = A + B/2 ⇒ 2β = A - B ⇒ β = A - B/2 Substituting all these values in 1 ⇒ sinA + sinB = 2 sin ½A + B cos ½A - B Hence, proved. How to Apply Sin A + Sin B? We can apply the sin A + sin B formula as a sum to the product identity. Let us understand its application using an example of sin 60º + sin 30º. We will solve the value of the given expression by 2 methods, using the formula and by directly applying the values, and compare the results. Have a look at the below-given steps. Compare the angles A and B with the given expression, sin 60º + sin 30º. Here, A = 60º, B = 30º. Solving using the expansion of the formula sin A + sin B, given as, sin A + sin B = 2 sin ½ A + B cos ½ A - B, we get, Sin 60º + Sin 30º = 2 sin ½ 60º + 30º cos ½ 60º - 30º = 2 sin 45º cos 15º = 2 1/√2 √3 + 1/2√2 = √3 + 1/2. Also, we know that sin 60º + sin 30º = √3/2 + 1/2 = √3 + 1/2 from trig table. Hence, the result is verified. ☛ Related Topics Trigonometric Chart Trigonometric Functions sin cos tan Law of Sines Let us have a look at a few examples to understand the concept of sin A + sin B better. FAQs on Sin A + Sin B What is the Value of Sin A Plus Sin B? Sin A plus Sin B is an identity or trigonometric formula, used in representing the sum of sine of angles A and B, Sin A + Sin B in the product form using the compound angles A + B and A - B. Here, A and B are angles. What is the Formula of SinA + SinB? SinA + SinB formula, for two angles A and B, can be given as sinA + sinB = 2 sin ½ A + B cos ½ A - B. Here, A + B and A - B are compound angles. What is the Product Form of Sin A + Sin B in Trigonometry? The product form of sin A + sin b formula is given as, sin A + sin B = 2 sin ½ A + B cos ½ A - B, where A and B are any given angles. How to Prove the Expansion of SinA + SinB Formula? The expansion of sin A + sin B, given as sinA + sinB = 2 sin ½ A + B cos ½ A - B, can be proved using the 2 sin α cos β product identity in trigonometry. Click here to check the detailed proof of the formula. How to Use Sin A + Sin B Formula? To use sin A + sin B identity in a given expression, compare the sin a + sin b formula, sin A + sin B = 2 sin ½ A + B cos ½ A - B with given expression and substitute the values of angles A and B. What is the Application of SinA + SinB Formula? SinA + SinB formula can be applied to represent the sum of sine of angles A and B in the product form of sine of A + B and cosine of A - B, using the formula, sin A + sin B = 2 sin ½ A + B cos ½ A - B.
rumus sin a cos b